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Abstract—This paper addresses the problem of goal-directed (e.g., collision) is less than a specified threshold everhén t
robot path-planning in the presence of uncertainties that & presence of randomly varying uncertainties. Chakravonty a
induced by bounded environmental disturbances and actuatin Kumar [7] used the concepts of probabilistic roadmaps (PRM)

errors. The offline infinite-horizon optimal plan is locally updated . .
by online finite-horizon adaptive re-planning upon observdion and rapidly exploring random trees (RRT) [8] to construct

of unexpected events (e.g., detection of unanticipated dasles). feedback controllers for robust planning in the presence®f
The underlying theory is developed as an extension of a grid- tion uncertainties. However, in many path planning aldwnis

based path planning algorithm, calledv*, that was formulated reported in literature, the offline computation does noketak
in the framework of probabilistic finite state automata (PFSA) into account potential runtime constraints (e.g., ungaied

and language measure from a control-theoretic perspectiveThe bstacl d onli daptation i tati Ihaisital
proposed concept has been validated on a simulation test béoat obstacles), and online adaptation is computationallyisitee.

is constructed upon a model of typical autonomous underwate ~ Robots (e.g., AUVs) are expected to operate in environ-
vehicles (AUVSs) in the presence of uncertainties. ments with external disturbances and hence, consideriag th

effects of these disturbances is critical for mission sssce

Consequently, the algorithms of path planning must be dapab

In general, path planning of robots (&,g,, autonomous undgg 5| time execution on in-situ computational platforrie
water vehicles (AUVs) and unmanned aerial vehicles (UAVS))aat these challenges, Chattopadhyay et al. [9] formulated

aims to optimize either travel time, energy usage, or Saety e ,,+ aigorithm in the framework of probabilistic finite state
operations. Recently, much work has been reported for paffyomata (PFSA) from a control-theoretic perspective. iFhe
planning in the presence of environmental uncertaintief@wA algorithm performs robot path planning for a specified ggal b
examples follow. _ __optimizing the language measure of the PFSA model [10][11]
Garau et al. [1] used the "Aalgorithm for path planning yh4t represents the workspace for the robot. In this setting
O,f AUVS by Atak\lng the effects of ocean curreqts into Con(iptimal path planning is equivalent to maximization of a
_S|dere_1t|on. Petres et "’_ll' [2] reported_ path planning oV&U  prgag performance, based on a quantitative measure of prob
in which a fast marching (FM) algorithm was used to modey,;jisiic regular languages. This concept of robot pathitag
the effects of ocean currents as an anls_otroplc cos_t fumt'?ointly maximizes the probability of reaching the targetiahe
Rhoads et al. [3] solved a dynamic Hamilton Jacobi Bellmag ,papijity of staying clear of the obstacles. Such a notibn
(HJB) equation to obtaln_the optlmall time-to-go* with 8goal-directed safe (e.g., Pareto optimization [12] of hitag
discontinuous and dynamic cost function for path planning goal and collision avoidance) navigation of autonomous

in the presence of ocean currents. Recently, Lolla et al. [3nicies is particularly important in the context of plangi

developed a methodology for AUV path planning, in which, w6 hresence of disturbances, especially to ensuresicoi

the concept of flow advection was combined with nominglae nayigation. In this case, Markov decision process (YIDP
vehicle motion until the desired goal was reached. Majumdgy, may not be suitable because of the requirement of tobus
et al. [5] generated libraries in the off-line pre-compiatat adaptation in real time [5]. The situation becomes worse for
stage for online robust motion planning, where some of thg. ot ohservability, because the formulation of a paltial
library members were _regenerated for colhspn aVO_'dan(?oservable Markov decision process (POMDP) would become
Blackmore et al. [6] designed a chance-constrained pieict., 1o tationally intractable for a real-time solution.
stochastic controller to ensure that the probability ofufai Language-measure-theoretic path planning offers an inher
* This work was supported in part by the U.S. Army Research tatboy ent adva_”tage Of_ global m_onOtoniCity [9] in the sense that
and the U.S. Army Research Office under Grant No. W911INF#8461, the solution iterations are finite and that a sequence of final
and by the U.S. Air Force Office of Scientific Research (AFOSRjler \yaypoints is generated. The PFSA, constructed out of the
Grant no. FA9550-12-1-0270. Any opinions, findings and asions or -\ e workspace, is optimized via an iterative sequerfce o

recommendations expressed in this publication are thogheofuthors and : ' > e
do not necessarily reflect the views of the sponsoring agenci combinatorial operations to maximize the language measure
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vector elementwise. Nevertheless, ihtealgorithm is different if w = zy, thenw € ¥* Va,y € ¥*; and ¢ is the identity
from a conventional search algorithm in the sense that @-auelement of the concatenation monoid [14]. In that cases
matically generates a measure gradient (e.g., no potémtied called a prefix ofw, andy is called a suffix ofw.
tion required), which is maximized at the goal. Furthermore
the time complexity of each iteration step is linear rekativ Definition 2.3 (PFSA) A probabilistic finite state automaton
the problem size (e.g., the dimension of the discretizetk st§PFSA) over an alphabet is a quintuple
space), and computation of the measure vector in a distdbut a
fashion makes the algorithm suitable, especially for high- G =(@%,0,mx), where
dimensional planning. These advantages render the pegsent « (@ is the nonempty finite set of states, || € N;
method potentially suitable for (offline) planning and (ag) e 0:Q x X* — @ is the transition map that satisfies the
adaptation in the presence of uncertainties. following conditionsiVg € Q Vs € ¥ Yw € ¥*
As an extension of the* algorithm [9], this paper formu- 6(q,€) = ¢; and 6(q, ws) = §(6(q, w), s).
lates an algorithm of grid-based robot path planning, whiche 7 : @ x ¥* — [0,1] is the morph function of state-
has been validated on a simulation test bed of autonomous specific symbol generation probabilities, which satisfies
underwater vehicles (AUVs) in the presence of uncertain the following conditionsVg € Q Vs € ¥ Yw € ¥*
ocean currents and actuation errors. Major contributiohs o 7(gq,s) > 0; > s 7(q,s) = 1; and
the paper beyond the work on tle& algorithm, reported by (g, e) = 1; m(q, ws) = 7(q,w) x w(d(q,w), s).
Chattopadhyay et al. [9], are outlined below. e X : Q — [-1,1]I9l is the vector-valued characteristic
« The notion of uncertainty is associated with the uncon- function that assigns a signed (normalized) real weight
trollable transitions in a controlled autonomous system. t0 each state.
This concept is different from the common practice of The (|Q| x |Q|) state transition probability matrixP is
superimposing the effects of disturbances on the plannéeffined as
trajectory of a robotic system. A
« The offline infinite-horizon optimal plan is locally up- P = [Pji], whereP;;, = Z (g5, 8) Va5, 9 € Q
dated by online finite-horizon adaptive re-planning upon s€3: 0(g7,8)=ax
observation of unexpected events (e.g., detection of unaiete: P is a non-negative stochastic matrix [15].

ticipated obstacles).
Remark 2.1 The restrictionsd|gxx — @ and 7lgxx —

2. BRIEF REVIEW OF LANGUAGE MEASURE THEORY [0, 1] of the function® and = in Definition 2.3 can be direCtly
obtained from the local structure of the PFSA. The unretstdc

This section summarizes the concept of (signed real) lan- " . . .
P (sig ) aTTmctlonsé andr can then be computed over the entire domain

uage measure [10] of probabilistic finite state automata ~ . . . . . o .
?PFgA) [13] and [the] role pof language measure for optirr?gy using the recursive relations listed in Definition 2.3yBik

. ; cal interpretations ofy are briefly provided in Subsection 2-A
control [11] of PFSA. While the theories of language measurehile the details are reported in Definition 5 of [10].

and the associated optimal control are developed in [1]]][13(\/

this section introduces pertinent definitions and sumrErarizDefinition 2.4 (Language) LetQ, S, 6, 7, x) be a PFSA. The
the essential concepts that are used in the sequel. language generated by all words, which terminates at a state

Definition 2.1 (Alphabet and Word) An alphabet is a % € @ after starting fromg; € @, is defined as

nonempty finite set of symbols. A finite-length string of sysnb L(gj,qr) = {wex*: 6(gj,w) = qr} 1)
from X is called a word and the empty word (i.e,, a string of n
symbols) is denoted as A word w of ¢/ symbols has length
|lw| = ¢ and |¢] = 0. The set of all words (including) is

ci’he language generated by all words, which may terminate at
any stateg € () after starting fromg; € @, is defined as

denoted as>*; the set of all words of lengtld is denoted as L(qj) L U L(qj,q) 2)
¥; and the set of all infinite strings of symbols is denoted as 4€0Q
e,

Given a PFSA(Q, X, 4, 7, x), the following facts are con-
Referring to Definition 2.1, the cardinalities of the follmg sidered before the notion of a measure is introduced on the

sets are noted below, languageL (see Definition 2.4).
« |X] € N, whereN is the set of positive integers. « The languagel is an at most countable (i.e., finite or
o |Xf = |3/ for any positive integer. countably infinite) set because C ¥*. Therefore, the
o |X*| = |N|, i.e., X* is countably infinite Ry). power set2” is either finite or uncountable; if uncount-
e |X¥| = |R|, i.e., X* is uncountably infinite (continuum). able, the cardinality o2’ is the same as that @& or

that of the standard Borel algebB{R) [16].
Definition 2.2 (Prefix and Suffix) LeE be an alphabet. The « A measurable spadd., >“2") can be constructed where
operation of concatenation of two words is closedXn i.e., every singleton set of a semi-infinite string of symbols,



whose suffix is a word irl, is a measurable set [16], [10].language measure provides a quantitative comparison bfievia
For brevity, thes-algebrax«2” is denoted a8”, because control policies [11].
every wordw € L is prefixed by a semi-infinite string of
symbols. That isw representsw and{w} € 2” implies Definition 2.6 (Control Philosophy) Let; = ¢; be the state
{zw} € ¥2F, wherez € ¥ is arbitrary. transition under occurrence of the eventlf the events is
disabled aty; by a supervisory action, then this state transition
Definition 2.5 (Language Measure) Let(q;, qx) and L(g;) fromg; to g, will be prevented by forcing the plant to stay at
be languages on a PFSR), %2, 4, m,x) and letd € (0,1) be the original statey;. Thus, disabling an eventat a given state
a parameter. A signed real meas[,ugfC . 2Llg.av) 5 R (that ¢ results in deletion of the original transition and appeacan
satisfies the requisite axioms of measure [16]) is defined & the self-loopi(q, s) = ¢ with the probability of occurrence
i N o] of s at stateq remaining unchanged in the supervised plant
py (Lgj ) = Z (1 —0)"m(qj,w)x(qr) () and also in the unsupervised plant.

weL(qj,qk)
The measure of the languaddy;) is defined as Definition 2.7 (Controllable Transitions): For a given plant,
. . transitions that can be disabled in the sense of Definitigh 2.
vp(L(g5)) = Z M';k(L(QjaCIk)) (4) are defined to be controllable; a transition that is not con-
Re) trollable is called uncontrollable. The set of controllabl

Following Definition 2.5, the set of language measures f(t)r|ansitions in a plant is denoted &S.

a PFSA is interpreted as a real-valued vector_of dimensionjf tpe supervisor is allowed to disable all subsets (inaigdi
|Q| and is denoted as, whose j*" component isvy € R the empty seb and the se€ itself) of the setC of controllable
corresponding to the stalg; < Q. Following Theorem 1 transitions, then there exists a bijection between the et o
in [10], the language measure of the PF8A, X, 0,7, x) in 4)| possible supervision policies and the power 26t in
Eg. (2.5) is expressed vectorially as other words, there arel/€! possible supervisors and each

ve = 0]l — (1 — )P "1y (5) supervisor is uniquely identifiable with. a .subset@‘ Thus,

the language measute allows a quantitative comparison of

where P is the state transition matrix (see Definition 2.3yifferent policies.
and the inverse on the right side exists for @lle (0,1).
Furthermore, as # — 0%, the matrix [l — (1 — #)P|~' Definition 2.8 (Controlled PFSA and Optimal Measure*)
converges to the Cesaro matrR £ limy_o 35—y P’. An optimally controlled (or supervised) PFS& =2
Then, the limiting measure vector, is obtained as [11] (@Q,%,6,mx,C) is a sextuple that maximizes its language
measurev, by disabling a selected subset©@f The optimized

VT T . . 1.
Yo = gliffﬁ Ve = 9155& l-(1-0P"x=Px (6) measurev, is denoted as/*.

wherel is the (|Q| x |Q]) identity matrix.
3. DESCRIPTION OF THESIMULATION TESTBED

A. Control Perspectives This section describes the simulation test bed that is built

From the perspectives of discrete-event optimal contrty,[1 UPOn @ rigid-body dynamic model of the planar motion of
the limiting language measure vectes in Eq. (6) is physi- & generic autonomous underwater vehicle (AUV) [17]. The
cally interpreted as follows. The language measure of a symationale for adopting such a simple model is that the usage
string starting at a statg € @ is interpreted to be the productof the proposed Ianguage-measurg-theorehc conceptsean b
of the morph probability (conditioned on the statg) and unamb|guously presented to explam how to c_ontrol the AUV
the characteristic weight; of the terminating state,,. For motion in the presence of environmental disturbances and
example, ifg, is a desirable state (e.g., goal) to terminat@ctuation errors. Nevertheless the theory is applicableaon
then y, should be assigned to be positive; similarly, dynamically feasible graph with any degree of details.
should be negative for an undesirable terminating statg,(e. "€ model takes into account the effects of yaW @and
obstacle)q.. Thus, the characteristic weights are assignd@® velocity vector of surge rate), sway rate ¢), and yaw
to represent the control specifications (i.e., larger pasit rate ¢), i.e,v = [u v r]"; but the effects of heavez),
weights to more desirable states) and the language mead@te(¢) and pitch ¢) are assumed to be negligible [17]. The
represents the goodness of the particular string relaibe resulting equations of motion are obtained as
give_n_specification qn_d_ the PFSA model [10]. In the sense of MY + C(v)v + D(v)v = 7 and b=r @)
Definition 2.5, the limiting language measurg sums up to
the limiting measures of each string starting from state where M = M7 is the inertia matrix;C(v) = —C(v)T is
Thus, ) captures the goodness gf based on not only its the Coriolis centripetal matrixD(v) is the damping matrix;
own characteristic weight, but also on how good are theggrinand = £ [Tu Ty r,‘]T is the vector of the system inputs
that will be generated from; in the future. In essence, thethat represent the forces generated by the on-board aduato

3



as well as those produced by environmental disturbancgs (e. 5 g
ocean current). In this model, control actions are gendrase T s
. . - ST o B
functions of the surge rate:) and yaw rate«) only, i.e., the = £ e
vehicle control input is restricted to bgon = [7, 0 7] £% E s
Surge and sway components of the ocean current vegtor S\ Sa

are modeled in terms of its directighand yaw angle) as
Ue = |ve|cos(B8 — ) and v, = |ve|sin(8 — ) (8)

Assuming that the vehicle’s onboard controller maintains
the desired yaw angl® during its course of motion (i.e.,
letting v = r = 0), the dynamic motion model is further
simplified to obtain the travel distand® and G along the
surge and sway directions [17], respectively, as

Uncontrollable
‘transitions
Uncontrollable

transitions

Fig. 1. lllustration of the effects of uncontrollable triims due to the
ty disturbances. It is shown how uncontrollable transitiorsy mause the robot
/ U(t) dt (9) to end up in a different neighboring state of the origin cilis interfering
to with control actions.

F(y, uc) £ /tf u(t)dt and G(v.) £

to

4, PROBLEM FORMULATION

This section formulates the problem of path planning fd¥ cell are assumed to be equally likely for the unsupervised
planar motion of robots in the presence of uncertainti@ltomatonGyayv. The vector-valued characteristic function
induced by environmental disturbances, where the workspac (see Definition 2.3) is chosen based anproiri known
is partitioned as a finite number of cells. Major assumptio@®odnessof individual states, explained in Subsection 2-A.
in the problem formulation are listed below. Since the environment map could be only partially known,

1) Partial knowledge of the static obstacles the robot must adapt to Fhe unforeseen opstacles in rqu time

2) No moving obstacles. Uncertain (e.g., fault-induced and environmental) distur

3) Partitioning of the workspace into cells as a regular.gri@@nces may cause uncontrollable transitions in the robot
4) Bounded disturbances and actuation errors with tiaPtion as seen in the example of Fig. 1, where the robot may
errors of PFSA states being limited to neighboring celfrroneously move to an unplanned state, thus interferitig wi

of the origin cell. control actions of robot path planning (see Assumption #4
Depending on the resolution of planning, a cell ma t the beginning of this section). Therefore, probabdisti

: . LS -gJecisions of path planning need to be made based on the set of
represent a single location or a sub-region in the planni . . "
b 9 g P thie available controllable actions of the robot to mitigtte

environment. The neighborhood of a cell is defined by takin s of th disturb n thi del. the stateit
into account feasible dynamics of transitions to that cell. ects ol these disturbances. 'n Tis modet, the statetian
n%robabllmes serve as a discretized representation oéffeets

The robot motion is modeled as controllable transitio ¢ disturb th bot d ) h the t i
among the cells as the robot chooses to execute its movés; Picdisiurbances on the robot dynamics, wnere the transition
bability P(¢;|¢:, s) represents the probability of reaching

moves may depend on the fidelity of motion discretization afd®

the robot’s intrinsic dynamics. Based on the specificatioins sj[atel(_]]g Ter 3xe|z%ut|ngl; an da(':tl?(ﬁ fr?mt Statf_qz" l{{ﬁmg tiiecl ,
inter-cell transitions, each cell in the partitioned wqrise is simpined modet developed In the fast section, the verscle

modeled as a PFSA state, where controllable transitions g%a_n.ve posm(_)n in the next time §tep (from the previous
defined by the corresponding state transition map. position after it makes a movee ¥ in the global Cartesian

Let a PFSAGyav — (Q,%,6,7,%) (see Definition 2.3) coordinate frame) is expressed as
represent the navigation model of a robot, where the states i
Q are cell locations in the original workspace and the alphabe Az = F cos(vp) — G sin(v)) (10)
size |X| is determined frc_)m the numper (_)f_ events th_at_may Ay = Fsin(y) + G cos()) (11)
cause controllable transitions. For simplicity of expiosif
this paper considers a planar robot that is allowed to freelyThe corresponding transition probabilitiBsinder the spec-
rotate about its geometric center, implying thaf{ = 9. As ified simplifying assumptions are then computed in terms of
an example, let the robot be in the statésee Fig 1) and then the probabilitiesP as:
let the robot make a choice to move to one of the states labeled P(g;]q:, s) = P([Az, Ay] € g;lqs, ) (12)
1 through8 or it may stay at. While the state transition map 4514, P SYES 4519
d (restricted toQ) x X) is constructed in the neighborhood ofin the absence of disturbanceB(g;|¢;,s) is either 0 or 1
a PFSA state and the morph functien(restricted toQ x ¥) such thatP(é(g¢:, s)|gi,s) = 1 and P(q;|q;,s) = 0 Vg; €
are constructed under the condition that, with negligittéees Q \ §(g;, s).
estimation error, the robot cathooseany controllable transi-  While the PFSAG y 4y specifies the discretized motion of
tion to execute at a cell. Hence, all controllable transii@t the planar robot, the matriR contains information about the

4



effects of the disturbances on its motion. With the knowkedgvhereq; € () is a neighboring state @f ands € ¥ represents
of Gyay and P, the path planning problem is reduced tahe control action.

the optimal supervision problem d&y 4y (in the sense of Let Gnay = (Q, X, 9, 7, x) be the unsupervised navigation
Definition 2.8) in the presence of disturbances specifie®.by automaton. From the knowledge of the morph probability
Detection of unforeseen obstacles during the robot omeratit and the conditional probability distributioR due to the
may result in a change of the characteristic weight vegtor environmental disturbances, a family of probability mzs,

In this context, new obstacles are considered as undesira®t(-,-,j), j =1,2,---,|N(g;)| is constructed, whergV (q;)|
terminating states and, therefore, are assigned negdtawe cis cardinality of the sefV(g;) of neighborhood states (includ-
acteristic weights (see Subsection 2-A). ing itself) of the statey; (e.g.,|N(g:;)| = 9 for any internal

5 SOLUTION APPROACH state of a planar robot), defined as

Formulation of the path-planning problem as a PFSA-based  Pc(4i, 5, 4j) = P(gjlgi, 8) x 7(qi,s) Vagi € Q (14)
navigation allows computation of optimally feasible pattes
the Iangu.age—measure-theoretlcl optimization schemetheor neighboring state (including itself) af. Vév(qi) (used in line
unsupervised model, the robot is free to choose from any ?j of Algorithm 1) is a local measure vector of staieand
the defined controllable events from any cell in the workepacConsists of the measure values of the states N(g:). The
The optimization algorithm, presented as Algorithm 1, s?- o . ) . : : a x [VAGi)-

. . - ransition matrixPg is optimized in an iterative fashion by
lectively disables controllable transitions to ensuret tthe : : . .
- : Algorithm 1 such that the strings, which are likely to lead to
measure vector of the navigation automaton is elementwis

maximized. Selected controllable transitions are dightite tcr?ehzsgéntitrzz p}reeasseiglc;e O;t:]r;etg'frt]grb?)g?ijsrrei;::?sg that

optimizes the state transition probability matRxsee Defini- the measure véctor i elgmentwise mgximized

tion 2.3). This is accomplished by maximizing the limiting ST i : '

measure vector (see Eg. (6)) in the sense of Definitio For path planning in a large-dimensional state space, a

28 which corresponds to the optimally supervised PE istributed iterative scheme is recommended for the compu-
- P P y sup B?tion of the language measure, which was reported in an

model for the robot. This implies that the supervised robot . - ! L
is constrained only to choose among the enabled moveseg{IIer publication [18]. The algorithm of optimized large

each state such that a Pareto trade-off is achieved betwS&roU"e Vectoris presented as Algorithm 1.

minimization of the collision probability and simultaneou Salient properties of Algorithm 1 are delineated below.
maximization of the goal-reaching probability. An imparta , Computation of the uncertain behavior of the robot's
point to note is that even though the measure values are based motion caused by environmental disturbanc€ke se-

on optimization qf a proba}bll|st|c_f|n|te state automata, an quence of disabling and enabling actions at the robot's
optimal and feasible plan is obtained that can be executed djscretion is generated by (elementwise) maximization of

where s € ¥ is a control action and(¢;,s) = ¢; is a

in a deterministic sense. _ _ the language measure vector. To relax the assumption of
For planning in the presence of environmental disturbances  restriction of uncontrollable transitions to the neighibgr
it is critical to consider the robot’s vulnerability to untain- states, a probability distribution over the entire worlapa

ties created by such disturbances (see Fig. 1). In the work coyid be considered instead of using a local measure
presented in [11][9], the measure vector was optimized by yector in line 24 of Algorithm 1. This is also true in

ignoring the uncontrollable transitions arising from thecer- trajectory planning for UAVs, where the environmental
tainties. However, ignoring the uncontrollable transiiaon the disturbances may require widening of its flight envelope.
presence of disturbances could be fatal for autonomoudsobo , Generation of the optimized measure veatrfor robot

In this paper, the effects of the uncontrollable transiiane navigation based on its PFSA model, along with the

taken into consideration while optimizing the measureect  gssociated optimized outputs: and P¢&. The path to
of the navigation automaton. In this framework, a combinato  the goal from arbitrary initial locations is obtained by
rial sequence of enabling and disabling of transitionsmojais following the gradient of measure vector.

a weighted combination of minimizing the probability of <ol Real-time obstacle avoidance in the presence of distudsanc
lision and maximizing the probability of reaching the goal i

h fi . tal disturb D is a difficult problem due to the disturbance-induced uncon-
€ presence otknown environmental disturbances. epgndfrollable transitions. An online re-planning algorithm stu

on the strength of enviropmental disturbances, the Cdetro'propagate the motion model in time and make sure that the
Qttempts to make an optimal trade-off betw_ee_n performaqro%ot is clear of the obstacle. In this regard, one may take
(I.E\J/.\}itzacholﬁ?gtg)aﬁgds:r?nzlfz':ir:)issc);tothugCdei.;iilrnl;fnsées on thadvantage of the fact that the stochastic navigation matrix
test bed, conditional probabilities for the robot (i.e., ¥to ﬁ.e., the optl_mlzed state transition matrix of the corieal
terminat'e at a neighboring stage are generated a.ls.' PFSA) contam; the mforrngtmn on _the d|§turbances. To make
a local adaptation, the original infinite horizon measuretee
P(g;lgi,s) such that Z P(qjlqi,s) =1 (13) is augmented with the information on recently discovered ob
4 E€N(g:) stacles. The effects of this obstacle are considered onte-fini
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Fig. 2. Optimal paths under different directions of the acearrent. (The vehicle is constrained to stay in the box awtdhit the walls.)
Algorithm 1 Distributed updating of measure vector for planninghose strings that reach the goal via the newly detectechclest
in the presence of disturbances states from the language generated by any state of the PFSA.

Eﬁg&:sﬁwﬁy(&i5,7r,x)79,PG The measure vector is consequently updated by removing
. ) G

1: Initialize ¥ ¢; € Q, v} = 0. those strings from the original optimal language generhted

2: Pdum — pg the states of the PFSA, i.e., by subtracting the measure of
gt =m such strings (see Definition 2.5) from the original language
4 \{v e Bﬁgg‘égf'””e asynchronous loop / measure. The resulting path improves monotonically in the
5. for each celly; € Q do re-planning time horizon because the estimate of the measur
6: if N(q;) # 0 then of such strings improves monotonically.

7 for each nodey; € N(gq;) do

8 Querywv; and x’

/ * * Enabling and Disabling transitions for Contrels / Algorithm 2 Updating of measure vector for re-planning

/ =+ Compare measure with neighbors and allow transitionRequire: GMV(Q 3,0, ,X) 0,P5, v, |T|
onIy to the better neighbors x / Ensure: Vreplan’ Pz, replars Teplan
9: if Ve < Vé then 1: Updatex with new information about obstacles
10: if Zk:‘ZkEN(Qi) Pg(qi, sj,k) # 0 then 2: Indmallze vg=v*&n=1
1L Pa(ai, 5i,2) = Pe(ai, si,2) + P& (ai, s, ) 3 Pgum = Pg andrdum = -
12: Pe(gi,s5,:) =0 4: while n < |T'| do _
13: (g, 8:) = 7(qs, 85) + 7™ (g5, 57) 5: Lines 4 through24 of Algorithm 1
14; (g, 5) =0 6 n=n+l
15: end if 7: end while

/ ** where,8(q;, s;) = qi & 6(qs,85) =qj **/

/ * * Disabling  x / Remark 5.1 The time complexity of Algorithm 1 is ~

16: else . .
17 S o gy Pl 5. k) == 0 then O(|QIIN(q)[?), for a PFSA withQ| states and N (q)| is the
18: PG (g, sj,:) = PE™ (g, 55,:) maximum neighborhood size of the PFSA states [18]. The time
19: Pe(ai, sis 1) = PG(QUSH(;) — P& (s, 54, 0) complexity of Algorithm 2 isy ~ O(|T'||N(q)|), whereT is
20: m(ai, si) = 7(gi, si) — 7" (g3, 5i) the finite-time horizon of re-planning.
21: w(qs, 85) = T (qs, 55)
/ %+ Enabling * /

22: end if 6. INTERPRETATION OF THERESULTS
23: end if . . . . .
o4 D S YPa (i, 51, )Y @) 0 7 This section presents pertinent resul.ts qf AUV simulation

/ * * Node updatingx * / for the proposed method of path planning in the presence of
25: end for uncertainties due to ocean currents. To justify the usage of
gg: eng?gr'f a disturbance-aware path planning algorithm for AUVs and
28: end while to demonstrate the algorithm’s efficacy to react to différen

types of disturbances, Fig. 2 shows the (simulated) optimal
paths of an AUV that is navigated from poiAtto point B

in a similar environment with three different directionstbé
time horizon of re-planning by using the already optimizedcean current. The optimal nominal paths in these threescase
stochastic navigation matriRg,. However, as the stochasticare significantly different, because the paths are caledlad
matrix was already optimized by considering the effects accommodate the disturbances due to the ocean current.
disturbances, the re-planning keeps the vehicle clear ®f th During actual navigation, the AUV is likely to deviate from
obstacle under such disturbances. The quality of adaptatibe nominal trajectory; however, it finds a path from any
is expected to improve with an increase in the re-planniragbitrary state to the terminal state by following the geaudi
time horizon. Hence, a choice of the re-planning time-tariz of the optimized measure vector. The nominal trajectory in
(T') depends on the trade-off between the computation tireach of the three plates in Fig. 2 shows ghertest safgath

and quality of the solution. The steps involved in re-plagni based on the expected deviations due to the disturbances.
are succinctly presented in Algorithm 2, which efficiently Figure 3 presents a scenario, where the environment is
computes a feasible path. This is accomplished by removiagly partially knowna priori and an unforeseen obstacle
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depend on the AUV’s speed and observation window.
For time-critical operations with limited computational-c
pabilities, a goal of re-planning is to ensure safety while

:mig maintaining an accepted level of performance (e.g., path
© Unforeseen 4 length). This trade-off could be achieved in the language-
§  Obstacte > measure-theoretic framework by selecting the charatteris
- oo *\‘\,’\\g" weight of new-obstacle states during re-planning, where an
;’ 25 : 35? increased penalty on collision with an obstacle would enkan

o ,\,\' safety at. the expense of a Iopger deviation frqm the pngmal
Inital Poing, .+ plan. This is achieved by having the characteristic weiglits
sl AL Direction of the the newly observed obstacles statesias x,,,, where the
0 multiplicative constant” is a positive real parameter, while
5 10 15 20 25 30 35 40

all other characteristic weights remain unchanged. Figure
shows the effects of changing the characteristic weightovec
for the cas€T| = 2 in Fig. 3. As seen in Fig. 4, the safety
margin is enhanced by increasirfg, which is capable of

at point D is observed when the AUV reaches poi@t accommodating larger anomalous behavior of the robot in the
Consequently, the original plan (i.e., without the knovgedf presence of ocean currents at the expense of an increased pat
the obstacle aD) is altered to avoid a potential collision. Inlength. For a family of admissible values &f, the convex hull

Fig. 3, the uncontrollable transitions (that are due to tbeam of the generated solutions would lead to a Pareto-optiroak fr
current) tend to push the vehicle upstream and path re-pplgnnrepresenting tradeoff between safety and performancearyor
attempts to by-pass the obstacleZgthowever, the amount of particular real-time operation, the choice of the paramate
time available for online re-planning is limited. Algonith2 is is dependent on computational capabilities and time availa
iteratively executed to improve the re-planning monotalyc for re-planning as well as strength of disturbances.

with an increase in the spdff’| of time horizonT. As seen
for |T| = 2,5, and 10 in Fig. 3, the respective re-plans are

X-coordinate

Fig. 3. Real-time re-planning over a finite time horizéh

generated to navigate the AUV further down so that even if the s | - - original Pran Terminal Point, B
vehicle is drifted upwards by the ocean current, it wouldl sti e :
be able to avoid a collision with the obstacle. By increasing 10Q |- - -K=6 £
the re-planning time horizon fronfl| = 2 to |T| = 10, 15 e Unforseen \,\’%
the plan becomes more robust to collision as it attempts to gz Observation ODbStaC'e ,x" :(;;f
keep the vehicle clear of the obstacle by a larger distance 8 ° Point ¢ ,\"(«:fé

by optimizing the margin of error due to the ocean-current- L2 ¥ ;:\I\ ',:g:?
induced disturbances. A small re-planning time horizonltss © » {

in local greedy search of the configuration space; it limits R (T Direction of the
the effects of the new obstacle to a narrow region around it. sl AN Ocean Current
A smaller re-planning time horizon also limits the expected 1o Bt POt

deviation of the vehicle due to disturbances. 5 10 15 20 25 30 35 4

X-Coordinate

A global optimal policy could be significantly different fo
a local greedy solution obtained in limited time as seen frig- 4. Re-planning withT'| = 2 for different characteristic weights.
Fig. 3, where the the re-planned path o1 = 15 is different
from those for|T'| = 2,5, and 10. While Algorithm 2 makes
local perturbations in the initial plan to keep the AUV clear
of an observed obstacle &t, a sufficiently large re-planning This paper presents a generalized framework for robust
time horizon (e.g./7| = 15 in Fig. 3) generates an optimalpath planning of AUVs in the presence of environmental
path such that the local changes in the re-planned path nuisturbances and actuation errors. Concepts of recentlgl-de
finally cause convergence to a global optimal path. oped language measure-based optimization [10][11] haee be

As the original optimal stochastic navigation matrix caméa applied to demonstrate successful navigation of an autonsm
information of the disturbance, even a small re-planninggeti robot moving in an uncertain and partially known environten
horizon could keep the AUV clear of the obstacle in th&he algorithm is robust to both modeling and environmental
presence of disturbances; however, robustness of the plansertainties; however, these uncertainties must be kelind
improve monotonically with increase in the re-planningdimThe efficacy of the proposed concept is demonstrated by
horizon parametefT’|. In essence, a choice ¢T'| depends numerical simulation on a test bed of an AUV moving in
on the in-situ computational capabilities of the AUV and ththe presence of ocean currents and unforeseen obstackes. Th
time available for online updating of the path plan, whichymapaper is summarized below.

7. SUMMARY, CONCLUSIONS ANDFUTURE WORK



1) It presents a path planning philosophy that is fundamen-
tally different from the ones reported in literature.

2) It performs online adaptation of the planning algorithmézl
to unanticipated obstacles in the presence of distur-
bances. 3]

Many path planning algorithms, reported in the currentdite
ture, may not be able to efficiently handle collision avoician [4]
in real time in the presence of disturbances, primarily due
to overwhelming computational requirements. It is shown in
this paper through numerical simulations that the language
measure-theoretic algorithm can handle unanticipatedaebs
cles in real time in the presence of disturbances. However,
actual performance comparisons with state-of-the-artrptey  [6]
is yet to be demonstrated by experimental validation.

While there are numerous research areas for robot pa{ﬂ
planning based on language-measure-theoretic concéts,
following topics are recommended for future research.

1) Construction of a biased sampling scheme while upi8]
dating the language measure of nodes in a distributed
fashion to enhance the quality of path planning and t(gg]
mitigate the computational cost. Such a scheme is impor-
tant for a trade-off betweegxplorationandexploitation  [10]
Extension of the proposed method of robot path planning
under time constraints as well as by minimizing thﬁl]
energy consumption.

Validation of the proposed method by laboratory exper-

imentation on a networked robotic test bed with norit?
holonomic constraints [8]. 13
Performance comparison with other methods like those
presented in [5][6][7]. [14]

2)
3)

4)
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